[1]周鹏飞,杨孝光,路 强,等.恶性肿瘤术后化疗住院患者DRG分组研究 ——基于E-CHAID算法[J].卫生经济研究,2023,40(6):35-39,43.
 ZHOU Pengfei,YANG Xiaoguang,LU Qiang,et al.Study on DRG Grouping of Postoperative Chemotherapy Inpatients with Malignant Tumor ——Based on E-CHAID Algorithm[J].Journal Press of Health Economics Research,2023,40(6):35-39,43.
点击复制

恶性肿瘤术后化疗住院患者DRG分组研究
——基于E-CHAID算法
分享到:

卫生经济研究[ISSN:1004-7778/CN:33-1056/F]

卷:
40
期数:
2023年6期
页码:
35-39,43
栏目:
疾病经济负担
出版日期:
2023-06-05

文章信息/Info

Title:
Study on DRG Grouping of Postoperative Chemotherapy Inpatients with Malignant Tumor
——Based on E-CHAID Algorithm
作者:
周鹏飞12杨孝光2路 强2王 帅2裴家兴12郭 望23张瀚博2李运明123
1.西南医科大学公共卫生学院,四川 泸州 646000
2.西部战区总医院,四川 成都 610083
3.西南交通大学数学学院,四川 成都 611756
Author(s):
ZHOU Pengfei YANG Xiaoguang LU Qiang WANG Shuai PEI Jiaxing GUO Wang ZHANG Hanbo LI Yunming
School of Public Health, Southwest Medical University, Luzhou Sichuan 646000, China
关键词:
恶性肿瘤化疗疾病诊断相关分组决策树
Keywords:
malignant tumor chemotherapy disease diagnosis related grouping decision tree
分类号:
R195;F840.684
文献标志码:
A
摘要:
目的:分析恶性肿瘤术后化疗患者住院费用的影响因素,设计DRG分组方案并制定支付标准,为DRG支付方式改革提供参考。方法:以四川省成都市某三甲综合医院2021年7月至2022年6月出院的恶性肿瘤术后化疗患者为研究对象,采用非参数检验及多元线性回归筛选出住院费用的主要影响因素,利用E-CHAID算法构建DRG分组方案,利用变异系数及非参数检验评价分组合理性,制定各DRG分组参考费用。结果:住院天数、是否有手术操作及是否有合并症或并发症被纳入决策树模型,最终生成9个DRG分组;各DRG分组的组内同质性高,组间异质性强,分组效果良好。结论:基于E-CHAID算法的恶性肿瘤术后化疗住院患者DRG分组方案科学合理,能够为医疗机构规范诊疗行为、控制资源消耗提供依据。
Abstract:
Objective To analyze the influencing factors of hospitalization expenses of patients with malignant tumor undergoing postoperative chemotherapy, establish the DRG grouping scheme for inpatients with this disease, and formulate the payment standard of hospitalization expenses, so as to provide reference for the reform of DRG payment mode. Methods The patients discharged from a tertiary general hospital in Chengdu, Sichuan Province from July 2021 to June 2022, who were mainly diagnosed with malignant tumors undergoing postoperative chemotherapy, were taken as the research object. The main influencing factors of hospitalization expenses were screened by using nonparametric tests and multiple linear regression. The E-CHAID algorithm was used to construct a DRG grouping scheme, and the coefficient of variation and nonparametric tests were used to evaluate the rationality of grouping and formulate reference costs for each DRG grouping. Results The length of hospital stay, presence of surgical procedures, and presence of comorbidities or complications were included in the decision tree model, resulting in the generation of 9 DRG groups. The intra group homogeneity and inter group heterogeneity of each DRG group are high, and the grouping effect is good. Conclusion The DRG grouping scheme based on E-CHAID algorithm for the inpatients with malignant tumor undergoing postoperative chemotherapy is scientific and reasonable, which can provide a basis for medical institutions to regulate medical behavior and control unreasonable resource consumption, and also provide some reference for promoting the reform of DRG payment mode.

参考文献/References:

[1] Feng R M,Zong Y N,Cao S M,et al.Current cancer situation in China:good or bad news from the 2018 Global Cancer Statistics[J].Cancer communications,2019,39(1): 22.
[2] Simillis C,Singh H,Afxentiou T,et al.Postoperative chemotherapy improves survival in patients with resected high-risk Stage II colorectal cancer:results of a systematic review and meta-analysis[J].Colorectal Disease.2020,22(10):1231-1244.
[3] Perri G,Prakash L,Qiao W,et al.Postoperative chemotherapy cenefits patients who received preoperative therapy and pancreatectomy for pancreatic adenocarcinoma[J].Annals of Surgery.2020,271(6):996-1002.
[4] Mathauer I,Wittenbecher F.Hospital payment systems based on diagnosis-related groups:experiences in low- and middle-income countries[J].Bulletin of the World Health Organization,2013,91(10): 746-756.
[5] 程广辉,闫书铭,时松和,等.神经系统疾病诊断相关分组研究——以河南省某三甲医院为例[J].现代预防医学,2021,48(10):1912-1916.
[6]国家医疗保障局办公室关于印发医疗保障疾病诊断相关分组(CHS-DRG)细分组方案(1.0版)的通知[EB/OL].( 2020-06-12). http://www.nhsa.gov.cn.
[7] 薛薇,SPSS modeler数据挖掘及应用(第三版)[M].北京:电子工业出版社,2020.
[8] David Biggs,Barry De Ville,Ed Suen.A method of choosing multiway partitions for classification and decision trees[J].Journal of Applied Statistics,1991,18(1): 49-62.
[9] Wu S W,Pan Q,Chen T,et al.Research of medical expenditure among inpatients with unstable angina pectoris in a single center[J]. Chinese Medical Journal.2017,130(13):1529-1533.
[10] Luo A J,Chang W F,Xin Z R,et al.Diagnosis related group grouping study of senile cataract patients based on E-CHAID algorithm[J].International Journal of Ophthalmology,2018,11(2): 308-313.
[11] 孙菲,韩俊洋,张文倩,等.基于决策树模型的急性心肌梗死病例组合研究[J].中国病案,2021,22(3):75-79.
[12] 杨蓉,涂晓贤,陈锦华.肺癌手术患者的DRGs分组研究[J].中国卫生统计,2021,38(5):769-772.
[13] 关于印发疾病诊断相关分组(DRG)付费国家试点技术规范和分组方案的通知[EB/OL].(2019-10-24)[2022-09-25].http://www.nhsa.gov.cn.
[14] 张娴静,王爱荣.DRG相对权重计算方法比较与探讨[J].中国医院管理,2020,40(9):70-71,76.
[15] 杜剑亮,刘骏峰,陈倩.不同决策树算法建立DRGs模型的差异[J].中国病案,2014,15(7):38-41.
[16] 赵彩莲,初菁菁.基于DRG医保付费的膀胱疾患住院费用分析[J].中国医院管理,2020,40(9):79-81,100.
[17] 钱庆文.你必须知道的DRG[M].北京:中译出版社,2021.
[18] 谷成胜,石平,何明方,等.DRG支付制度下的临床路径实施效果评价研究——基于间断时间序列模型[J].中国医疗保险,2022(5):11-16.
[19] 何宗亮,王迅.基于临床路径管理框架下的DRG精细化管理[J].经济师,2021(8):250,252.
[20] 李梦滢,孙志成,唐尧,等.基于DRG的公立医院临床路径管理体系建设[J].卫生经济研究,2022,39(2):67-69,74.
[21] 张中花,章浩然.基于DRG的安徽某大型三甲医院病案首页质量改进研究[J].卫生经济研究,2020,37(3):29-31,35.
[22] 丁涛,郭冬.医院信息化医保控费研究[J].卫生经济研究, 2021,38(10):77-79.

相似文献/References:

[1]马 雷,柳俊杰,李 军,等.天津市恶性肿瘤医保患者自付状况分析[J].卫生经济研究,2017,(04):50.
[2]李 勇,王 冬,向国春,等.广东省恶性肿瘤治疗费用核算结果分析——基于“SHA2011”[J].卫生经济研究,2019,(09):25.
 LI Yong,WANG Dong,XIANG Guo-chun,et al.Analysis of Accounting Results of Treatment Costs for Malignant Tumors in Guangdong Province——Based on “SHA2011”[J].Journal Press of Health Economics Research,2019,(6):25.
[3]罗雅双,刘心怡,陈 文.不同医保类型恶性肿瘤终末期患者卫生服务利用比较分析[J].卫生经济研究,2019,(11):44.
 LUO Ya-shuang,LIU Xin-yi,CHEN Wen.Comparative Analysis of Health Service Utilization of End-stage patients with Malignant Tumors of Different Types of Medical Insurance[J].Journal Press of Health Economics Research,2019,(6):44.
[4]董 辉,汤质如,严 训,等.安徽省恶性肿瘤治疗费用分析——基于“卫生费用核算体系2011”[J].卫生经济研究,2021,38(2):58.
 DONG Hui,TANG Zhi-ru,YAN Xun,et al.Analysis on Malignant Tumor Treatment Cost in Anhui Province——Based on the SHA 2011[J].Journal Press of Health Economics Research,2021,38(6):58.
[5]黄 果,董来东.恶性肿瘤住院患者疾病特征及医疗费用研究[J].卫生经济研究,2021,38(3):67.
 HUANG Guo,DONG Lai-dong.Study on Disease Characteristics and Medical Expenses of Inpatients with Malignant Tumor[J].Journal Press of Health Economics Research,2021,38(6):67.
[6]赵 威,覃双凌.基于DRG的恶性肿瘤患者住院费用新灰色关联分析[J].卫生经济研究,2022,39(4):50.
 ZHAO Wei,QIN Shuang-ling.A New Grey Correlation Analysis on Inpatient Costs for Malignant Tumor Patients Based on DRG[J].Journal Press of Health Economics Research,2022,39(6):50.

更新日期/Last Update: 2023-06-05